On nonlocal Dirichlet problems with oscillating term
نویسندگان
چکیده
<p style='text-indent:20px;'>In this paper, a class of nonlocal fractional Dirichlet problems is studied. By using variational principle due to Ricceri (whose original version was given in J. Comput. Appl. Math. 113 (2000), 401–410), the existence infinitely many weak solutions for these established by requiring that nonlinear term <inline-formula><tex-math id="M1">\begin{document}$ f $\end{document}</tex-math></inline-formula> has suitable oscillating behaviour either at origin or infinity.</p>
منابع مشابه
On homogenization problems for fully nonlinear equations with oscillating Dirichlet boundary conditions
We study two types of asymptotic problems whose common feature and difficultyis to exhibit oscillating Dirichlet boundary conditions : the main contribution of this article is to show how to recover the Dirichlet boundary condition for the limiting equation. These two types of problems are (i) periodic homogenization problems for fully nonlinear, second-order elliptic partial differential equat...
متن کاملNonlocal Diffusion Problems That Approximate the Heat Equation with Dirichlet Boundary Conditions
We present a model for nonlocal diffusion with Dirichlet boundary conditions in a bounded smooth domain. We prove that solutions of properly re-scaled non local problems approximate uniformly the solution of the corresponding Dirichlet problem for the classical heat equation.
متن کاملOn a Class of Nonlocal Elliptic Problems with Critical Growth
This paper is concerned with the existence of positive solutions to the class of nonlocal boundary value problems of the Kirchhoff type − [ M (∫ Ω |∇u|2 dx )] Δu = λ f (x,u)+u in Ω,u(x) > 0 in Ω and u = 0 on ∂Ω, where Ω ⊂ RN , for N=1,2 and 3, is a bounded smooth domain, M and f are continuous functions and λ is a positive parameter. Our approach is based on the variational method.
متن کاملNonlocal Problems with Neumann Boundary Conditions
We introduce a new Neumann problem for the fractional Laplacian arising from a simple probabilistic consideration, and we discuss the basic properties of this model. We can consider both elliptic and parabolic equations in any domain. In addition, we formulate problems with nonhomogeneous Neumann conditions, and also with mixed Dirichlet and Neumann conditions, all of them having a clear probab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S
سال: 2022
ISSN: ['1937-1632', '1937-1179']
DOI: https://doi.org/10.3934/dcdss.2022130